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Abstract—Three-dimensional(3D) localization plays a crucial
role in numerous computer vision applications. While 3D lo-
calization traditionally relied on specialized hardware setups
or multiple cameras, recent advancements have explored the
potential of monocular cameras for achieving 3D localization.
This research paper investigates and develops techniques for
three-dimensional (3D) localization using a monocular camera on
a 3D space. By leveraging the principles of geometrical method,
particularly triangulation, the study aims to achieve accurate 3D
localization. A red LED bulb is used as the object to be localized.
Hence the proposed approach utilizes color thresholding for
establishing correspondences between multiple images. Extensive
experiments are conducted using an industrial robot arm to
validate the developed algorithms, evaluating their accuracy
against known 3D positions. The outcomes of this research
provide insights on the change of accuracy in 3D localization
using a geometrical method, for various camera positions.

Index Terms—3D localization, Monocular vision, Triangula-
tion, Depth Estimation, Color Thresholding

I. INTRODUCTION

One of the most discussed key problems in the computer
vision is the 3D localization of objects using two dimensional
images of the scene. Similar to the cameras, the human eyes
also only receive two-dimensional perception of the world.
However, in everyday lives, humans effortlessly operate in the
three-dimensional world. The ability to interpret the three-
dimensional world using the two-dimensional projections of
the scene comes naturally to the human brain. Replicating
this seemingly easy process has been proven to be quite
challenging over the years [1].

In order to solve this problem different types of camera
systems have been used. Monocular camera systems, stereo
camera systems and multiple camera systems are used in
several studies for object localization in three-dimensional
space. Losada et al. [2] used a multi camera system fixed in the
space and synchronized with each other to localize a mobile
robot in the given space. The three-dimensional position of
the mobile robots within the given environment is determined
by the information taken by the multi camera sensor. Kim
and Choong Yow proposed using a monocular camera system
mounted on a drone for depth estimation purposes [3]. Stereo
camera system is the senser system that is most frequently
utilized camera vision systems. In this system two cameras
separated by a baseline are used.

The reason for the popularity of the stereo systems in
the depth estimation applications is the ease of use and
comparatively high accuracy of the estimated depth. Depth
information can be obtained by attaining the disparity of the
corresponding points of left and right images [4]. However,
there are several downsides of using two or multiple camera
systems compared to using a single camera. Increased pay
load, space constraints, camera placement are a few things to
be concerned when using multiple camera systems [3].

When using a monocular camera system, the depth informa-
tion which is inherent to stereo camera system is lost. Hence
obtaining depth perception has proven to be a challenging
task in monocular camera systems. With the development of
Artificial Intelligence several approaches have been proposed
as a solution. Muslikhin et al. [5] introduced a method based
on both k-nearest neighbors (kNN) and the fuzzy inference
system (FIS) to localize junction boxes in three-dimensional
space. Another approach discussed by Saxena and Jamie [6]
is incorporating monocular cues such as texture variations and
gradients, color, etc.- into stereo systems. This is done using
Markov Random Field (MRF) learning algorithm. Leitner et
al. [7] tackle the problem of localizing objects from vision
system on a humanoid robot. They compare the performance
of the approaches Artificial Neural Network (ANN) and Ge-
netic Programming. The methods which uses learning based
methods can capture complex scenes but the accuracy highly
relies on the quality of the training data set.

Although the AI techniques are quickly gaining popularity
the fundamental methodology of 3D localization is the geo-
metric approach. It is based on the principles of triangula-
tion method. Our approach for localizing an object on the
three-dimensional plane utilized distance-based triangulation
method. This is typically done using a stereo camera system.
Building on [8], in this paper we discuss how triangulation
can be used to obtain the depth perception for a single camera
system. It can effectively handle scenes with depth disconti-
nuities and occlusions and provide accurate depth information
for textured and well-calibrated scenes. However, handling
varying lighting conditions and dynamic scenes can be difficult
using this method. During this experiment localization of a
static object using a moving camera is attempted. Furthermore,
the accuracy of the estimated depth values is presented using



Fig. 1. Process of the proposed model.

the experimental data set.

II. PROPOSED METHODOLOGY

In this proposed method, for the purpose of obtaining the
two-dimensional projection of the scene a simple RGB camera
is required. For this study, a Raspberry PI camera module V2
is used and in the place of the object a red LED bulb is used.
A red LED bulb was chosen as the object considering the ease
of isolating the object on the image plane using simple color
thresholding techniques.

In this approach the conventional stereo camera system has
been replaced by a single moving camera which allows to
take the pictures from different positions and angles. In stereo
vision the cameras are fixed. Hence the relative position and
the orientation of the cameras do not change. Thus, it has
a fixed baseline distance between the cameras. The baseline
is inversely proportional to disparity between two images
[4]. Hence the baseline distance affects the accuracy of the
calculated depth. In contrast, the relative position and the
orientation can be varied in this proposed model to achieve
an accurate depth estimation. The change in relative position
and the orientation of the two camera positions also poses a
challenge to the calculations of the geometrical method.

A. System Overview

Overview of the proposed approach is illustrated in figure 1.
The approach consists of three main steps: taking images from

Fig. 2. Relationship between different coordinate frames.

Fig. 3. Pin hole camera model.

two different positions, stereo correspondence and disparity
calculation, depth calculation. in order to validate the proposed
method, a ‘KUKA KR 6 R900 sixx’ robot arm manipulator is
used. The robot arm manipulator utilized in this study consists
of six degrees of freedom. The camera is attached on the end
effector of KUKA KR 6 R900 sixx. The camera is fixed in
the same orientation as that of the end effector. Therefore, the
orientation and the position of the camera can be obtained.
Using the robot arm the images of the scene can be taken from
different positions and orientations as required. The position of
the object can be calculated with respect to camera coordinate
frame using those images. The calculated coordinates can be
translated and get the coordinates of the object with respect
to the Robot base frame as shown in figure 2. Thus, the robot
arm can be driven to the calculated position. This can be used
to validate the calculated position.

B. Camera Model

For this approach a pin hole camera model must be used
to capture the images. A pin hole camera model consists of
a light-tight box with a tiny aperture on one side. Pin hole
camera sets apart from other cameras due to its absence of
lens. In this study, a Raspberry camera has been modelled as
a pin hole camera for convenience. Cameras typically have
different distortions due to lens imperfections. The projection
of the 3D scene on the pin hole camera can be model can be
mathematically modelled as shown in figure 3.

In figure 3 the object in 3D world is projected onto the
image plane. The object coordinates with respect to the camera
coordinates (XC, YC, ZC) can be derived from the object
coordinates with respect to the world coordinates (XW, YW,
ZW). This transformation is done using the equation (1) [8].
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Equation 1 can be expressed as below.
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Here in equation 1 the rotational matrix and the translation
matrix of the camera coordinate frame with respect to the
world coordinate frame is expressed as R and T respectively.
Here the camera coordinate frame is centered on the camera
lens. As shown in the equation 2 world coordinates are trans-
formed into camera coordinates using the extrinsic matrix. The
camera coordinates can be transformed into the 2D coordinates
on the image plane by using the intrinsic matrix [9].
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Intrinsic matrix expresses the internal parameters of the
camera. Here the fx, fy are the focal lengths of the camera in
the x and y directions respectively. Cx , Cy are the principle
points of the image plane. It gives the point of intersection
between the image plane and the optical axis. The equation 3
gives a mathematical model of 2D projection of the 3D world.

C. Camera Calibration

The aim of camera calibration is to accurately estimate the
intrinsic and extrinsic parameters of the camera to correct for
distortions and accurately project 3D points onto the image
plane. Since the camera used has lenses unlike in the pin
hole model camera the images may have distortions. The
most significant distortions in images are radial distortion and
tangential distortion [9]. With proper calibration, the captured
images can be redeemed from such distortions. If not, it
can affect the accuracy of measurements and the quality of
localizing algorithm.

The key objective of camera calibration is to estimate the
camera’s intrinsic matrix. The focal length determines the scale
of the image, the principal point represents the optical center
of the camera, and the distortion factors account for any non-
linear deformations introduced by the lens.

In this study a checkerboard pattern is used as the calibration
target. It is the most commonly used target. A detection
algorithm is used to identify the corners of the squares.
The corners of the checkerboard pattern are infinitely small
and consistent against lens distortions. Therefore, the corners
detection is done up to a sufficient accuracy [10].

In this experiment the camera calibration is done with the
use of OpenCV library is used. Since it offers a variety of
computer vision algorithms, it can be used in many computer
vision tasks such as camera calibration effectively [11]. To
calibrate the camera a number of photos of the checkerboard
is taken covering different angles and orientations. Then it
is processed to detect the corners in the checkerboard. Here

Fig. 4. Captures of the checkerboard used for Raspberry pi camera calibration.

Fig. 5. Corner points detection of the checkerboard.

the correspondence between the image and the object is
established. The cv2.calibrateCamera() function is then used to
estimate the camera parameters, adapting Zhang’s algorithm.
This function uses objects and corresponding image points
detected in the earlier step. As a result, this gives the intrinsic
matrix and distortion factors.

Following the above method, the intrinsic matrix of the
camera was found as, 499.8846516 0 318.9251849

0 502.5206681 243.8386911
0 0 1


It also gives the radial distortion coefficients (k1, k2, k3 ) and

tangential distortion coefficients (p1, p2). All the experimental
results for the camera calibration are mentioned in the table I

D. Object Selection

In this study a red LED bulb is used. Since the object
of interest has a distinctive color the object on the image
plane can be selected using a color thresholding method. Color
thresholding is a simple yet effective method that involves
segmenting objects based on their color information. The
output of the camera is an RGB image. RGB image produce
color using a combination of Red, Green, Blue color. This
indicates that each pixel in the captured image possesses values
for Red, Green, Blue ranging from 0 to 255 depending on the
intensity of the color [12].

Due to the ease of color separation the RGB color space is
converted into the HSV color space. Here color information
previously mentioned as RGB values in separated into three
components: Hue, Saturation, and Value. Hue represents the
dominant color information. It describes the type of color,
such as red, green, blue, yellow, etc. Saturation represents the



Fig. 6. Captured images of the object and the color thresholding without
removing contours.

TABLE I
RESULTS OF CAMERA CALIBRATION

Parameter Result
fx 499.885
fy 502.521
cx 318.925
cy 243.838
k1 0.174
k2 -0.476
k3 -0.003
p1 0.011
p2 0.191

intensity of a color. This can also be described as the vividness
or vibrancy of the color. Value represents the brightness of the
color where the lowest value applicable for V corresponds to
black color. Each of the three can take any integer ranging
from 0 to 255. This method is less sensitive to the variations
of the light making it more robust compared to the RGB color
space [13].

For the image processing and selecting the object,
OpenCV library was used. In order to convert the RGB
color space into HSV color space ”cv2.cvtColor(image,
cv2.COLOR BGR2HSV)” function was used. Then a upper
and lower threshold for the selected color is set. Using these
threshold values, the image is filtered as shown in 6 These
filtered images may have noises. To avoid the noises in the
filtered image the area of a contour is calculated. Areas below
a set value are considered as noise and they are filtered out
to separate the object of interest and figure 7. Then the pixel
coordinates of the center of the object of interest can be easily
obtained using the filtered image.

E. Depth Estimation

Using the above discussed methods, we were able to obtain
the corresponding of the object on the image plane. These
coordinates are used to estimate the depth of the object of
interest. Our approach to depth estimation in 3D plane was a

Fig. 7. Isolated of object of interest after filtering contours based on area.

Fig. 8. Geometrical method for depth estimation.

geometrical method to precisely calculate the depth. As shown
in figure 8 the camera will capture an image from the position
1 and the move to the position 2. Both images from position
1 and position 2 will be processed.

To get the depth of the object the lines of sight of the camera
to object from two positions are drawn as shown in figure 8.
The crossing point of two lines is the position of the object
in the 3D world. Hence the position of object on the 2 lines
is taken as F and G respectively. The midpoint of the shortest
distance between the 2 lines is considered as the actual position
of the object. The equations for the 2 lines can be written as
given in the equation 4 and 5.

F = P + λ.r (4)

G = Q+ µ.s (5)

Here P and Q denote the camera position in the world
coordinates(coord.). r and s are the unit vectors along the two
lines. Here λ and µ are unknowns. Hence to calculate the F
and G, λ and µ must be found. The unit vectors along the two
lines, r and s can be found using the equation.

r = (R′)T.

 x′

y′

c

 (6)

s = (R′′)T.

 x′′

y′′

c

 (7)



Fig. 9. Reference coordinate frame for calculations.

TABLE II
ERROR PERCENTAGE ON THE CALCULATED COORDINATES WHEN THE

OBJECT IS PLACED IN DIFFERENT POSITIONS

Image Calculated Coord. Actual Coord. Error Percentage(%)
x 1 7.70 -22.20 -134.60

2 223.40 194.80 14.65
3 51.40 28.10 82.71

y 1 -812.90 -838.80 -3.08
2 -803.20 -780.00 2.97
3 -794.50 -792.30 0.27

z 1 813.50 833.80 -2.43
2 818.10 818.50 -0.04
3 777.10 757.10 2.64

Here the R’ and R” are the rotational matrices of the camera
in position 1 and position 2 respectively. Pixel coordinates of
the corresponding points is obtained with respect to principle
point as ( x’, y’) and (x”, y”) respectively. Focal length
calculated during the camera calibration is denoted as c.

Since FG ⊥ PF,

(P + λ.r − (Q+ µ.s)).r = 0 (8)

Likewise, FG ⊥ QG,

(P + λ.r − (Q+ µ.s)).s = 0 (9)

P, Q are the relative positions of the camera. The equation
(8), (9) can be rephrased as below.

[
rT.r − sT.r
rT.s− sT.s

] [
λ
µ

]
=

[
rT.r − sT.r
rT.s− sT.s

] [
r
s

]
(10)

By solving the equation (10) the values for λ and µ can be
calculated accordingly. By getting the middle point between
the F and G the coordinates of the object on the 3D plane is
obtained.

H =
F +G

2
(11)

III. EXPERIMENTAL RESULTS

In order to validate our purposed algorithm, experimental
results are taken. Here the camera is mounted on the end
effector of the industrial robot arm ’KUKA KR 6 R900’.
Using the robot arm the camera is moved. The position and

Fig. 10. The error percentage when the camera position changes along Y
axis

Fig. 11. The error percentage when the camera position changes along X
axis

orientation of the camera can be taken through the robot
arm. After calculating the object coordinates with respect to
the camera coordinates it is converted into the robot base
coordinate frame. All the results for analysis are taken with
respect to the robot base coordinate frame.

To validate the calculated coordinates, the LED bulb was
placed upon different places and the 3D coordinates were
calculated as shown in table II.

As shown in the table II the error of the calculated co-
ordinates is very small. Likewise, the error percentage when
the camera position changes with respect to the first camera
position can be analyzed as well.

As observed in the figure 10 the error percentage of the
depth calculation (y coordinate) decreases when camera is
moved with respect to the first camera position, along the y
axis towards the object. After a certain point the error starts
to increase.

As observed in the figure 10 the error percentages of
the depth calculation (y coordinate) as well as the x and
z coordinates increase when the displacement between two
cameras are decreased below a certain value(100mm). When
the displacement of camera position decreases the disparity
between the two images also decreases as shown in figure 12.
When the disparity decreases the error percentage is increased.

The robot can be moved in the path towards the object along
the path shown in figure 13. When the camera approaches



Fig. 12. The error percentage of depth with disparity of the images

Fig. 13. Robot moving path towards the object.

towards the object the error percentage increases as shown in
table III.

IV. CONCLUSION

This study aimed to achieve three-dimensional (3D) local-
ization using a monocular camera, in contrast to traditional
methods that rely on stereo camera systems, specifically target-
ing the localization of a red LED bulb. The proposed approach
was adapts a geometrical method based on mathematical
principles and algorithms to accurately calculate the position
of the object on 3D plane. Main steps involved were selecting
the object on the image plane, performing 3D localization
and manipulating a robot arm to reach the localized object.
The study utilizes the ’KUKA KR 6 R900’ industrial robot
arm for camera movement and validation of the calculated
3D coordinates. Analysis of the results reveals that reducing
the camera displacement along the x-axis increases the error
in 3D coordinate calculation, while increasing displacement
along the y-axis(towards the object) leads to increased depth
error. Additionally, when moving the camera in a zigzag path
towards the object the error in calculated coordinates were
increased. In this method the accuracy of the results highly
relies on the calibration data and the lighting conditions of
the scene.

TABLE III
ERROR PERCENTAGE ON THE CALCULATED COORDINATES WHEN THE

CAMERA APPROACHES TOWARDS THE OBJECT

Camera position(mm) Error percentage(%)
X Y Z X Y Z

200 -525 890 81.085 3.686 4.199
50 -535 890 187.438 0.535 6.171
150 -585 890 190.920 0.937 5.201
60 -625 890 837.518 95.293 20.625
120 -665 890 292.986 9.070 0.921
80 -705 890 49.414 12.297 6.918

Verifying the robustness of the algorithm using more chal-
lenging scenarios and integrating learning methods to increase
the accuracy is to be considered for future work.
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